CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation.
نویسندگان
چکیده
Histone H3 methylation at R17 and R26 recently emerged as a novel epigenetic mechanism regulating pluripotency in mouse embryos. Blastomeres of four-cell embryos with high H3 methylation at these sites show unrestricted potential, whereas those with lower levels cannot support development when aggregated in chimeras of like cells. Increasing histone H3 methylation, through expression of coactivator-associated-protein-arginine-methyltransferase 1 (CARM1) in embryos, elevates expression of key pluripotency genes and directs cells to the pluripotent inner cell mass. We demonstrate CARM1 is also required for the self-renewal and pluripotency of embryonic stem (ES) cells. In ES cells, CARM1 depletion downregulates pluripotency genes leading to their differentiation. CARM1 associates with Oct4/Pou5f1 and Sox2 promoters that display detectable levels of R17/26 histone H3 methylation. In CARM1 overexpressing ES cells, histone H3 arginine methylation is also at the Nanog promoter to which CARM1 now associates. Such cells express Nanog at elevated levels and delay their response to differentiation signals. Thus, like in four-cell embryo blastomeres, histone H3 arginine methylation by CARM1 in ES cells allows epigenetic modulation of pluripotency.
منابع مشابه
Regulation of Pluripotency-related Genes and Differentiation in Mouse Embryonic Stem Cells by Direct Delivery of Cell-penetrating Peptide-conjugated CARM1 Recombinant Protein
Coactivator-associated arginine methyltransferase 1 (CARM1) is included in the protein arginine methyltransferase (PRMT) family, which methylates histone arginine residues through posttranslational modification. It has been proposed that CARM1 may up-regulate the expression of pluripotency-related genes through the alteration of the chromatin structure. Mouse embryonic stem cells (mESCs) are pl...
متن کاملMicroRNA-181 Regulates CARM1 and Histone Aginine Methylation to Promote Differentiation of Human Embryonic Stem Cells
As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملSpermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine
Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2009